본문 바로가기
Computer Vision

ResNet (2016) PyTorch Implementation

by 아르카눔 2024. 4. 24.

ResNet을 Pytorch를 활용하여 구현하고자 한다.

https://arsetstudium.tistory.com/45에서 공부한 내용을 토대로 구현보면 아래와 같다.

 

ResNet 구조는 여러가지인데 18, 34, 50, 101, 152 layers다.

 

VGGNet처럼 ResNet도 블록 단위로 구분할 수 있다.

블록단위로 구현하고 또 다양한 수의 레이어를 적용할 수 있도록 작성하고자 한다.

 

우선 Block을 만들기 위한 Sub-block 코드다.

 

 

Table 1에서 conv2 block에서 개별 conv2_x를 만드는 코드다.

 

# Sub-block for 18, 34 layers
class ResNetTwoSubBlock(nn.Module):
    def __init__(self, in_features, out_features, start=False):
        super().__init__()
        
        if start == False:
            self.conv_sub_block = nn.Sequential(
                nn.Conv2d(in_features, out_features, kernel_size = 3, padding = 1),
                nn.ReLU(),
                nn.Conv2d(out_features, out_features, kernel_size = 3, padding = 1),
                nn.ReLU()
            )

        else:
            self.conv_sub_block = nn.Sequential(
                nn.Conv2d(in_features, out_features, kernel_size = 3, stride = 2, padding = 1),
                nn.ReLU(),
                nn.Conv2d(out_features, out_features, kernel_size = 3, padding = 1),
                nn.ReLU()
            )
        
    def forward(self, x):
        y = self.conv_sub_block(x)
        return y
    
# Sub-block for 50, 101, 152 layers
class ResNetThreeSubBlock(nn.Module):
    def __init__(self, in_features, mid_features, out_features, start=False):
        super().__init__()
        if start == False:
            self.conv_sub_block = nn.Sequential(
                nn.Conv2d(in_features, mid_features, kernel_size = 1, padding = 0),
                nn.ReLU(),
                nn.Conv2d(mid_features, mid_features, kernel_size = 3, padding = 1),
                nn.ReLU(),
                nn.Conv2d(mid_features, out_features, kernel_size = 1, padding = 0),
                nn.ReLU()
            )
        else:
            self.conv_sub_block = nn.Sequential(
                nn.Conv2d(in_features, mid_features, kernel_size = 1, stride = 2, padding = 0),
                nn.ReLU(),
                nn.Conv2d(mid_features, mid_features, kernel_size = 3, padding = 1),
                nn.ReLU(),
                nn.Conv2d(mid_features, out_features, kernel_size = 1, padding = 0),
                nn.ReLU()
            )

        
    def forward(self, x):
        y = self.conv_sub_block(x)
        return y

 

위 sub-block을 이용해서 전체 layers를 만드는 코드다.

 

class ResNet(nn.Module):
    def __init__(self, in_features, out_features, num_layers = 34):
        super().__init__()
        self.num_layers = num_layers
        # First Conv Block
        # 찍어 보니까 output size 112를 맞추려면 padding이 3이다.
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_features, 64, kernel_size = 7, stride = 2, padding = 3),
            nn.ReLU()  
        )
        # padding size 1
        self.max_pool = nn.MaxPool2d(kernel_size = 3, stride = 2, padding=1)
        
        if self.num_layers == 18:
            num_loops = [2, 2, 2, 2]
        elif self.num_layers in (34, 50):
            num_loops = [3, 4, 6, 3]
        elif self.num_layers == 101:
            num_loops = [3, 4, 23, 3]
        elif self.num_layers == 152:
            num_loops = [3, 8, 36, 3] 
            
        # 18 or 34-layers 구조인 경우
        if self.num_layers in (18, 34):
            self.conv2_block = self.build_blocks_two(num_loops[0], 64, 64, start=False)
            self.conv3_block = self.build_blocks_two(num_loops[1], 64, 128)
            self.conv4_block = self.build_blocks_two(num_loops[2], 128, 256)
            self.conv5_block = self.build_blocks_two(num_loops[3], 256, 512)
            # Transform Layers to connect Residual Connections
            self.connect3 = nn.Conv2d(64, 128, kernel_size = 1, stride = 2)
            self.connect4 = nn.Conv2d(128, 256, kernel_size = 1, stride = 2)
            self.connect5 = nn.Conv2d(256, 512, kernel_size = 1, stride = 2)
        # 50 or 101 or 152-layers 구조인 경우
        else:
            self.conv2_block = self.build_blocks_three(num_loops[0], 64, 64, 256, start=False)
            self.conv3_block = self.build_blocks_three(num_loops[1], 256, 128, 512)
            self.conv4_block = self.build_blocks_three(num_loops[2], 512, 256, 1024)
            self.conv5_block = self.build_blocks_three(num_loops[3], 1024, 512, 2048)
            # Transform Layers to connect Residual Connections
            self.connect3 = nn.Conv2d(256, 512, kernel_size = 1, stride = 2)
            self.connect4 = nn.Conv2d(512, 1024, kernel_size = 1, stride = 2)
            self.connect5 = nn.Conv2d(1024, 2048, kernel_size = 1, stride = 2)

    # conv2,3,4,5 blocks를 만드는 코드 
    def build_blocks_two(self, iter_loops, in_channels, out_channels, start=True):
        block_list = [ResNetTwoSubBlock(in_channels, out_channels, start=start)]
        for i in range(iter_loops-1):
            block_list.append(ResNetTwoSubBlock(out_channels, out_channels))
        block_list = nn.ModuleList(block_list)
        return block_list
    
    def build_blocks_three(self, iter_loops, in_channels, mid_channels, out_channels, start=True):
        block_list = [ResNetThreeSubBlock(in_channels, mid_channels, out_channels, start=start)]
        for i in range(iter_loops-1):
            block_list.append(ResNetThreeSubBlock(out_channels, mid_channels, out_channels))
        block_list = nn.ModuleList(block_list)
        return block_list


    def forward(self, x):
        if self.num_layers in (18, 34):
            y = self.conv1(x)
            y = self.max_pool(y)
            # Conv 2 Block
            for conv in self.conv2_block:
                y = conv(y) + y
            # Conv 3 Block
            for conv in self.conv3_block:
                y = conv(y) + y
            # Conv 4 Block
            for conv in self.conv4_block:
                y = conv(y) + y
            # Conv 5 Block
            for conv in self.conv5_block:
                y = conv(y) + y

        return y

 

중간에 shortcut connection에서 linear transformation으로 시도하려다가 실패하고 torchvision으로 구현된 코드를 참고했다.

그래서 1x1 convolution self.connect 코드로 이미지 사이즈는 보존하되 채널의 수만 변경하려고 시도했다. 

18이나 34 레이어 ResNet은 맨 처음 stride 2인 convk_1 layer와만 채널 수를 맞추면 residual connection (= shortcut connection)이 작동한다.

 

하지만 50이상의 레이어 구조의 경우 stirde 2가 아닌 경우에도 채널 수가 계속 layer input의 채널 수와 계속해서 달라진다.

따라서 ResNet 클래스 내에서  self.connect를 생성하는 것 보다는 sub-block에 만들고, 필요할 때 마다 쓰는게 더 낫다.

torchvision에서 왜 BasicBlock 클래스 내에 self.identity 혹은 self.downsample의 형식으로 만들어서 residual connection에 사용하는지를 이해할 수 있었다.

 

큰 접근은 틀리지 않았지만 주요 부분들을 모두 torchvision을 참고했기에 별도의 구현은 여기서 멈추고 일종의 모범 답안인 torchvision의 ResNet class를 아래에서 살펴보고 마무리하겠다.

 

# Conv2, 3, 4, 5 Blocks를 만드는 sub-block
class BasicBlock(nn.Module):
    expansion: int = 1

    def __init__(
        self,
        inplanes: int,
        planes: int,
        stride: int = 1,
        downsample: Optional[nn.Module] = None,
        groups: int = 1,
        base_width: int = 64,
        dilation: int = 1,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
    ) -> None:
        super().__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if groups != 1 or base_width != 64:
            raise ValueError("BasicBlock only supports groups=1 and base_width=64")
        if dilation > 1:
            raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = norm_layer(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = norm_layer(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x: Tensor) -> Tensor:
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out

# 원래의 ResNet과 다르게 conv2가 아닌 conv1에 stride를 설정 
class Bottleneck(nn.Module):
    # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
    # while original implementation places the stride at the first 1x1 convolution(self.conv1)
    # according to "Deep residual learning for image recognition" https://arxiv.org/abs/1512.03385.
    # This variant is also known as ResNet V1.5 and improves accuracy according to
    # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.

    expansion: int = 4

    def __init__(
        self,
        inplanes: int,
        planes: int,
        stride: int = 1,
        downsample: Optional[nn.Module] = None,
        groups: int = 1,
        base_width: int = 64,
        dilation: int = 1,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
    ) -> None:
        super().__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        width = int(planes * (base_width / 64.0)) * groups
        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv1x1(inplanes, width)
        self.bn1 = norm_layer(width)
        self.conv2 = conv3x3(width, width, stride, groups, dilation)
        self.bn2 = norm_layer(width)
        self.conv3 = conv1x1(width, planes * self.expansion)
        self.bn3 = norm_layer(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x: Tensor) -> Tensor:
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class ResNet(nn.Module):
    def __init__(
        self,
        block: Type[Union[BasicBlock, Bottleneck]],
        layers: List[int],
        num_classes: int = 1000,
        zero_init_residual: bool = False,
        groups: int = 1,
        width_per_group: int = 64,
        replace_stride_with_dilation: Optional[List[bool]] = None,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
    ) -> None:
        super().__init__()
        _log_api_usage_once(self)
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        self._norm_layer = norm_layer

        self.inplanes = 64
        self.dilation = 1
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
            raise ValueError(
                "replace_stride_with_dilation should be None "
                f"or a 3-element tuple, got {replace_stride_with_dilation}"
            )
        self.groups = groups
        self.base_width = width_per_group
        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = norm_layer(self.inplanes)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0])
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1])
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2])
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck) and m.bn3.weight is not None:
                    nn.init.constant_(m.bn3.weight, 0)  # type: ignore[arg-type]
                elif isinstance(m, BasicBlock) and m.bn2.weight is not None:
                    nn.init.constant_(m.bn2.weight, 0)  # type: ignore[arg-type]
    # Sub-blocks = BasicBlock을 이용해서 Convk Block을 생성
    def _make_layer(
        self,
        # 오리지널 ResNet대로 갈지, Bottleneck으로 갈지 결정
        block: Type[Union[BasicBlock, Bottleneck]],
        planes: int,
        blocks: int,
        stride: int = 1,
        dilate: bool = False,
    ) -> nn.Sequential:
        norm_layer = self._norm_layer
        downsample = None
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                conv1x1(self.inplanes, planes * block.expansion, stride),
                norm_layer(planes * block.expansion),
            )

        layers = []
        # 논문에서 표기한대로 맨 처음에 stirde 2와
        # residual connection을 위한 downsample 추가
        layers.append(
            block(
                self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer
            )
        )
        # stride 1이고 downsample이 없다
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(
                block(
                    self.inplanes,
                    planes,
                    groups=self.groups,
                    base_width=self.base_width,
                    dilation=self.dilation,
                    norm_layer=norm_layer,
                )
            )

        return nn.Sequential(*layers)

    def _forward_impl(self, x: Tensor) -> Tensor:
        # See note [TorchScript super()]
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        # Conv 2, 3, 4, 5 Block을 생성
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
       
        # Classificaiton Layers
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.fc(x)

        return x

    def forward(self, x: Tensor) -> Tensor:
        return self._forward_impl(x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

References:

https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py#L59