Computer Vision
Tasks | Model | Review | Implementation |
Image Classification, Object Detection |
AlexNet | AlexNet 논문 리뷰 | AlexNet 구현 |
Image Classification, Object Detection |
VGGNet | VGGNet 논문 리뷰 | VGGNet 구현 |
Image Classification, Object Detection |
GoogLeNet = Inception v1 | GoogLeNet 논문 리뷰 | GoogLeNet 구현 |
Object Detection | R-CNN | R-CNN 논문 리뷰 | R-CNN 구현 |
Object Detection | SPPNet | SPPNet 논문 리뷰 | SPPNet 구현 |
Image Classification | Inception V3 | Inception V3 논문 리뷰 | |
Feature Map Visualization | Visualizing and Understanding Convolutional Networks | Visualizing and Understanding Convolutional Networks 논문 리뷰 | - |
Object Detection | Fast R-CNN | Fast R-CNN 논문 리뷰 | - |
Image Classification, Object Detection |
ResNet | ResNet 논문 리뷰 | ResNet 구현 |
Object Detection | Faster R-CNN | Faster R-CNN 논문 리뷰 | Faster R-CNN 구현 |
Face Recognition, Face Verification, Re-Identification |
FaceNet | FaceNet 논문 리뷰 | - |
Pose Estimation | DeepPose | DeepPose 논문 리뷰 | - |
Semantic Segmentation | FCN | FCN 논문 리뷰 | - |
Semantic Segmentation | DeepLab v1 | DeepLab v1 논문 리뷰 | - |
Semantic Segmentation | U-net | U-net 논문 리뷰 | - |
Object Detection | YOLO v1 | YOLO v1 논문 리뷰 | - |
Object Detection | CAM | CAM 논문 리뷰 | - |
Object Detection | SSD | SSD 논문 리뷰 | - |
Object Detection | DenseNet | DenseNet 논문 리뷰 | - |
Object Detection Class Imbalance |
RetinaNet (Focal Loss) | RetinaNet (Focal Loss) 논문 리뷰 | - |
Semantic Segmentation | DeepLab v2 | DeepLab v2 논문 리뷰 | - |
Data Augmentation | CutMix | CutMix 논문 리뷰 | |
Object Detection | YOLO v2 | YOLO v2 논문 리뷰 | |
Object Detection | FPN | FPN 논문 리뷰 | |
Semantic Segmentation | DeepLab v3 | DeepLab V3 논문 리뷰 | |
Image Classification, Object Detection, Face Attributes, Face Recognition, Network Size |
MobileNet | MobileNet 논문 리뷰 | |
Image Classification | Squeeze-and-Excitation | Squeeze-and-Excitation 논문 리뷰 | |
Image Classification, Network Size |
EfficientNet | EfficientNet 논문 리뷰 | |
Network Structure | NASNet | NASNet 논문 리뷰 | |
Image Classification, Object Detection, Face Attributes, Face Recognition, Network Size |
MobileNet V2 | MobileNet V2 논문 리뷰 | |
Image Classification | Inception v4 | Inception v4 논문 리뷰 | |
Image Classification Depthwise Convolution |
Xception | Xception 논문 리뷰 | |
Image Classification, Object Detection, Face Attributes, Face Recognition, Network Size |
MobileNet V3 | MobileNet V3 논문 리뷰 | |
Object Detection | YOLO v3 | YOLO v3 논문 리뷰 | |
Image Classification | ViT (Vision Transformer) | ViT 논문 리뷰 | |
OOD Detector | ODIN | ODIN 논문 리뷰 | |
Human Pose Estimation, Semantic Segmentation, Object Detection |
HRNet | HRNet 논문 리뷰 | |
Object Detection Anchor Free |
FCOS | FCOS 논문 리뷰 | |
Object Detection | CenterNet | ||
Image Classification, Object Detection, Semantic Segmentation |
Swin Transformer | Swin Transformer 논문 리뷰 | |
Image Classification, Network Size |
EfficientNet V2 | EfficientNet V2 논문 리뷰 | |
Object Detection | YOLO v4 | YOLO v4 논문 리뷰 | |
OCR (Optical Chracter Recognition) | CRAFT | CRAFT 논문 리뷰 | |
Object Detection | DETR | DETR 논문 리뷰 | |
Image Classification Network Structure |
MLP Mixer | ||
Masked Model Image Classification, Semantic Segmentation |
BEiT | ||
Semantic Segmentation | SegFormer | ||
Image Classification | RegNet | ||
View Synthesis | NeRF | ||
DINO | |||
MobileViT | |||
ConvNeXt | |||
YOLO v6 | |||
YOLO v7 | |||
Mask2Former | |||
DiT | |||
Generative Model | Stable Diffusion | ||
Generative Model | ControlNet | ||
Segment Anything | |||
YOLO v8 | |||
RetNet | |||
I-JEPA | |||
YOLO v9 | |||
RT-DETR | |||
YOLO v10 |
NLP
Tasks | Model | Review | Implementation |
Classification, Machine Translation, Time Series Prediction |
LSTM | LSTM 설명 | LSTM 일부 구현 |
Classification, Machine Translation, Time Series Prediction |
GRU | GRU 설명 | - |
Classification, Machine Translation, Time Series Prediction |
Transformer | Transformer 논문 리뷰 및 일부 코드 포함 | - |
Multiple NL Tasks | BERT | BERT 논문 리뷰 | - |
Multiple NL Tasks | GPT 1 | GPT 논문 리뷰 | - |
Multiple NL Tasks | RoBERTa | RoBERTa 논문 리뷰 | - |
Multiple NL Tasks | BART | BART 논문 리뷰 | - |
Multiple NL Tasks | T5 | T5 논문 리뷰 | - |
Multiple NL Tasks | XLNet | XLNet 논문 리뷰 | - |
Sentence Embedding | Sentence-BERT | Sentence-BERT 논문 리뷰 | |
Multiple NL Tasks | GPT 2 | GPT 2 논문 리뷰 | - |
Multiple NL Tasks | ELECTRA | ELECTRA 논문 리뷰 | - |
Attention Mechanism | MQA (Multi-Query Attention) | MQA 논문 리뷰 | |
Activation Function | GLU variants | GLU variants 논문 리뷰 | |
Attention Mechanism | Longformer | Longformer 논문 리뷰 | |
LLM | GPT 3 | GPT 3 논문 리뷰 | |
Scaling Law for LM | Scaling Law for LM | Scaling Law for LM 논문 리뷰 | |
Positional Embedding | RoPE | RoPE 논문 리뷰 | |
RAG | RAG | RAG 논문 리뷰 | |
Chain of Thought Prompt Reasoning |
CoT | CoT 논문 리뷰 | |
PEFT | LoRA | LoRA 논문 리뷰 | |
LLM | OPT | OPT 논문 리뷰 | |
LLM Data Annotation |
LaMDA | LaMDA 논문 리뷰 | |
LLM | GLM | ||
LLM | Gopher | ||
LLM | PaLM | PaLM 논문 리뷰 | |
LLM | BLOOM | ||
Scaling Law for LM | Emergent Abilities of LLM | Emergent Abilities of LLM 논문 리뷰 | |
LLM Scaling Law for LM |
Chinchilla | Chinchilla 논문 리뷰 | |
LLM RLHF |
InstructGPT | InstructGPT 논문 리뷰 | |
LLM | Self-Instruct | Self-Instruct 논문 리뷰 | |
Chain of Thought Prompt Reasoning |
CoT SC | CoT SC 논문 리뷰 | |
LLM | FLAN-T5 | ||
LLM | LLaMA | LLaMA 논문 리뷰 | |
LLM | Alpaca | ||
LLM Evaluation | LLM as a Judge | LLM as a Judge 논문 리뷰 | |
Prompt Reasoning |
ReAct | ReAct 논문 리뷰 | |
RAG evaluation | RAGAS | RAGAS 논문 리뷰 | |
RAG | Self-RAG | Self-RAG 논문 리뷰 | |
LLM | GPT 4 | GPT 4 Technical Report | |
LLM | LLaMa 2 | LLaMA 2 논문 리뷰 | |
Prompt Reasoning |
Plan and Solve | Plan and Solve 논문 리뷰 | |
LLM GQA Flash Attention KV Cache |
Mistral 7B | Mistral 7B 논문 리뷰 | |
LLM | Falcon | Falcon 논문 리뷰 | |
Prompt Reasoning |
Tree of Thought | ToT 논문 리뷰 | |
Long Context | Lost in the Middle | Lost in the Middle 논문 리뷰 | |
Code Generation | CodeGen | ||
Code Generation | Code Llama | ||
Code Generation | StarCoder | ||
RAG | Table Augmented Generation | TAG 논문 리뷰 | |
Prompt Instruction Fine-Tuning |
ChartInstruct | ChartInstruct 논문 리뷰 | |
Survey LLM |
A Survey of Large Language Model - Wayne Xin Zhao et al (2024) | 논문 리뷰 | |
Survey SLM |
Small Language Models: Survey, Measurements, and Insights - Zhenyan Lu et al (2024) | 논문 리뷰 | |
LLM | Gemma | ||
LLM | Griffin | ||
LLM | Recurrent Gemma | ||
LLM | Falcon Mamba | ||
LLM | LLaMa 3 | ||
LLM | Claude 3 Model Family | ||
LLM | Gemma 2 | ||
LLM | BLT | ||
LLM MoE |
Mixtral | ||
Recurrent Model | RWKV | ||
State Space Model | Mamba | ||
Code Generation | DeepSeek-Coder-V2 | ||
Code Generation | Qwen 2.5 Coder | ||
Survey Prompt |
A Survey of Prompt Engineering Methods in LLMs for Differenct NLP Tasks - S. Vatsal & H. Dubey (2024) | Vatsal & Dubey 논문 리뷰 | |
Scaling Law for LM | s1: Simple test-time scaling | ||
LLM | LLaMa 4 |
Multimodal
Tasks | Model | Review | Implementation |
Image Caption Generation | Show and Tell = NIC | NIC 논문 리뷰 | |
Vision-Language Model Zero-shot Image Classification |
CLIP | CLIP 논문 리뷰 | |
Vision-Language Model Document Understanding |
LayoutLM v1 | LayoutLM v1 논문 리뷰 | |
Vision-Language Model Document Understanding |
LayoutLM v2 | LayoutLM v2 논문 리뷰 | |
Vision-Language Model Document Understanding |
LayoutLM v3 | LayoutLM v3 논문 리뷰 | |
Zero-shot Vision-Language Model Generative Model |
DALL-E | DALL-E 논문 리뷰 | |
Vision-Language Model Document Understanding |
Donut | Donut 논문 리뷰 | |
Vision-Language Model | BLIP | BLIP 논문 리뷰 | |
Multimodal LLM | KOSMOS | ||
Multimodal LLM | BLIP-2 | BLIP-2 논문 리뷰 | |
Multimodal LLM | Flamingo | Flamingo 논문 리뷰 | |
Multimodal LLM | Video-LLaMA | ||
Multimodal LLM Instruction Fine-Tuning |
LLaVA | LLaVA 논문 리뷰 | |
Multimodal LLM | LLaVa 1.5 | ||
Multimodal LLM | Gemini | ||
Multimodal LLM | Gemini 1.5 | ||
Multimodal LLM | PaliGemma | ||
Multimodal LLM | LLaMA 3.2 | ||
Multimodal LLM | Chameleon | ||
Vision-Language Model Document Understanding |
olmOCR |
Time Series & Finance
Tasks | Model | Review | Implementation |
Time Series | HiPPO | HiPPO 논문 리뷰 | |
Time Series | H3 | ||
Time Series | Hyena | ||
Time Series | S4 | ||
Time Series | Mamba | ||
Time Series | Mamba 2 | ||
LLM | BloombergGPT | BloombergGPT 논문 리뷰 | |
LLM | FinGPT | FinGPT 논문 리뷰 | |
Multimodal Financial Data |
MFFMs | MFFMS 논문 리뷰 |
Tabular Data
Tasks | Model | Review | Implementation |
'Deep Learning' 카테고리의 다른 글
Floating-point Number와 Mixed Precision (0) | 2025.04.29 |
---|---|
Meta, Few-shot, Zero-shot, Active Learning (0) | 2024.10.25 |
Tensorboard and WandB (0) | 2024.03.29 |
알아두면 좋은 주요 딥러닝 모델들 (0) | 2024.02.22 |
Memory Requirement of Deep Learning Models (0) | 2024.02.01 |